Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Curr Top Med Chem ; 23(5): 371-388, 2023.
Article in English | MEDLINE | ID: covidwho-2295851

ABSTRACT

Iridoids are secondary plant metabolites that are multitarget compounds active against various diseases. Iridoids are structurally classified into iridoid glycosides and non-glycosidic iridoids according to the presence or absence of intramolecular glycosidic bonds; additionally, iridoid glycosides can be further subdivided into carbocyclic iridoids and secoiridoids. These monoterpenoids belong to the cyclopentan[c]-pyran system, which has a wide range of biological activities, including antiviral, anticancer, antiplasmodial, neuroprotective, anti-thrombolytic, antitrypanosomal, antidiabetic, hepatoprotective, anti-oxidant, antihyperlipidemic and anti-inflammatory properties. The basic chemical structure of iridoids in plants (the iridoid ring scaffold) is biosynthesized in plants by the enzyme iridoid synthase using 8-oxogeranial as a substrate. With advances in phytochemical research, many iridoid compounds with novel structure and outstanding activity have been identified in recent years. Biologically active iridoid derivatives have been found in a variety of plant families, including Plantaginaceae, Rubiaceae, Verbenaceae, and Scrophulariaceae. Iridoids have the potential of modulating many biological events in various diseases. This review highlights the multitarget potential of iridoids and includes a compilation of recent publications on the pharmacology of iridoids. Several in vitro and in vivo models used, along with the results, are also included in the paper. This paper's systematic summary was created by searching for relevant iridoid material on websites such as Google Scholar, PubMed, SciFinder Scholar, Science Direct, and others. The compilation will provide the researchers with a thorough understanding of iridoid and its congeners, which will further help in designing a large number of potential compounds with a strong impact on curing various diseases.


Subject(s)
Iridoid Glycosides , Iridoids , Iridoids/pharmacology , Iridoids/chemistry , Iridoids/metabolism , Plants , Plant Extracts/chemistry , Monoterpenes , Antioxidants
2.
Biosci Rep ; 43(2)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2186166

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still underway. Due to the growing development of severe symptoms, it is necessary to promote effective therapies. Ambroxol [2-amino-3,5-dibromo-N-(trans-4-hydroxycyclohexyl) benzylamine] has long been used as one of the over-the-counter mucolytic agents to treat various respiratory diseases. Therefore, we focused on the mechanism of action of ambroxol in COVID-19 treatment. In vitro and in silico screening revealed that ambroxol may impede cell entry of SARS-CoV-2 by binding to neuropilin-1. Ambroxol could also interact with multiple inflammatory factors and signaling pathways, especially nuclear factor kappa B (NF-κB), to interfere cytokines cascade activated by SARS-CoV-2 internalization. Furthermore, multipathways and proteins, such as the cell cycle and matrix metalloproteinases (MMPs), were identified as significant ambroxol-targeting pathways or molecules in PBMC and lung of severe COVID-19 patients by bioinformatics analysis. Collectively, these results suggested that ambroxol may serve as a promising therapeutic candidate for the treatment of severe SARS-CoV-2 infection.


Subject(s)
Ambroxol , COVID-19 , Humans , SARS-CoV-2 , Ambroxol/therapeutic use , Ambroxol/pharmacology , Polypharmacology , COVID-19 Drug Treatment , Leukocytes, Mononuclear
4.
Front Bioinform ; 1: 693177, 2021.
Article in English | MEDLINE | ID: covidwho-2089806

ABSTRACT

The life-threatening disease COVID-19 has inspired significant efforts to discover novel therapeutic agents through repurposing of existing drugs. Although multi-targeted (polypharmacological) therapies are recognized as the most efficient approach to system diseases such as COVID-19, computational multi-targeted compound screening has been limited by the scarcity of high-quality experimental data and difficulties in extracting information from molecules. This study introduces MolGNN, a new deep learning model for molecular property prediction. MolGNN applies a graph neural network to computational learning of chemical molecule embedding. Comparing to state-of-the-art approaches heavily relying on labeled experimental data, our method achieves equivalent or superior prediction performance without manual labels in the pretraining stage, and excellent performance on data with only a few labels. Our results indicate that MolGNN is robust to scarce training data, and hence a powerful few-shot learning tool. MolGNN predicted several multi-targeted molecules against both human Janus kinases and the SARS-CoV-2 main protease, which are preferential targets for drugs aiming, respectively, at alleviating cytokine storm COVID-19 symptoms and suppressing viral replication. We also predicted molecules potentially inhibiting cell death induced by SARS-CoV-2. Several of MolGNN top predictions are supported by existing experimental and clinical evidence, demonstrating the potential value of our method.

5.
Front Pharmacol ; 13: 952192, 2022.
Article in English | MEDLINE | ID: covidwho-2009896

ABSTRACT

The coronavirus disease 2019 pandemic accelerated drug/vaccine development processes, integrating scientists all over the globe to create therapeutic alternatives against this virus. In this work, we have collected information regarding proteins from SARS-CoV-2 and humans and how these proteins interact. We have also collected information from public databases on protein-drug interactions. We represent this data as networks that allow us to gain insights into protein-protein interactions between both organisms. With the collected data, we have obtained statistical metrics of the networks. This data analysis has allowed us to find relevant information on which proteins and drugs are the most relevant from the network pharmacology perspective. This method not only allows us to focus on viral proteins as the main targets for COVID-19 but also reveals that some human proteins could be also important in drug repurposing campaigns. As a result of the analysis of the SARS-CoV-2-human interactome, we have identified some old drugs, such as disulfiram, auranofin, gefitinib, suloctidil, and bromhexine as potential therapies for the treatment of COVID-19 deciphering their potential complex mechanism of action.

6.
Struct Chem ; 33(6): 2179-2193, 2022.
Article in English | MEDLINE | ID: covidwho-2007218

ABSTRACT

COVID-19 disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was declared a global pandemic by the World Health Organization (WHO) in March 2020. Since then, the SARS-CoV-2 virus has impacted millions of lives worldwide. Various preclinical and clinical trials on the treatment of COVID-19 disease have revealed that the drugs that work in combination are more likely to reduce reinfection and multi-organ failure. Considering the combination drug therapy, herein, we performed a systematic computational study starting with the formation of sixty-two combinations of drugs and phytochemicals with 2-deoxy-D-glucose (2-DG). The top nineteen combinations resulting from Drug-Drug Interaction (DDI) analysis were selected for individual and multiple-ligand-simultaneous docking (MLSD) study with a host target Serine Protease (TMPRSS2; PDB ID: 7MEQ) and two viral targets, Main Protease (3CLpro; PDB ID: 6LU7) and Uridylate-Specific Endoribonuclease (NSP15; PDB ID: 6VWW). We found that the resulting drugs and phytochemicals in combination with 2-DG shows better binding than the individual compounds. We performed the re-docking of the top three drug combinations by utilizing the polypharmacology approach to validate the binding patterns of drug combinations with multiple targets for verifying the best drug combinatorial output obtained by blind docking. A strong binding affinity pattern was observed for 2-DG + Ruxolitinib (NIH-recommended drug), 2-DG + Telmisartan (phase 4 clinical trial drug), and 2-DG + Punicalagin (phytochemical) for all the selected targets. Additionally, we conducted multiple-ligand-simultaneous molecular dynamics (MLS-MD) simulations on the selected targets with the 2-DG + Ruxolitinib combination. The MLS-MD analysis of the drug combinations shows that stabilization of the interaction complexes could have significant inhibition potential against SARS CoV-2. This study provides an insight into developing drug combinations utilizing integrated computational approaches to uncover their potential in synergistic drug therapy. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02049-0.

7.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Article in English | MEDLINE | ID: covidwho-2001616

ABSTRACT

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Computers , Drug Design , Drug Discovery/methods , Humans , Molecular Docking Simulation
8.
Vaccines (Basel) ; 10(8)2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-1979451

ABSTRACT

Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro, generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including the B.1.1.7 (alpha) variant. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure-activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future.

9.
Appl Biochem Biotechnol ; 194(10): 4511-4529, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1942968

ABSTRACT

Furin, a pro-protein convertase, plays a significant role as a biological scissor in bacterial, viral, and even mammalian substrates which in turn decides the fate of many viral and bacterial infections along with the numerous ailments caused by cancer, diabetes, inflammations, and neurological disorders. In the wake of the current pandemic caused by the virus SARS-CoV-2, furin has become the center of attraction for researchers as the spike protein contains a polybasic furin cleavage site. In the present work, we have searched for novel inhibitors against this interesting human target from FDA-approved antiviral. To enhance the selection of new inhibitors, we employed Kohonen's artificial neural network-based self-organizing maps for ligand-based virtual screening. Promising results were obtained which can help in drug repurposing and network pharmacology studies can address the errors generated due to promiscuity/polypharmacology. We found 15 existing FDA antiviral drugs having the potential to inhibit furin. Among these, six compounds have targets on important human proteins (LDLR, FCGR1A, PCK1, TLR7, DNA, and PNP). The role of these 15 drugs inhibiting furin can be established by studying further on patients infected with number of viruses including SARS-CoV-2. Here we propose two promising candidate FDA drugs GS-441524 and Grazoprevir (MK-5172) for repurposing as inhibitors of furin. The best results were observed with GS-441524.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine/analogs & derivatives , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Furin/genetics , Humans , Ligands , Neural Networks, Computer , Polypharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Toll-Like Receptor 7
10.
J Chem Sci (Bangalore) ; 134(2): 57, 2022.
Article in English | MEDLINE | ID: covidwho-1803103

ABSTRACT

Exploring the new therapeutic indications of known drugs for treating COVID-19, popularly known as drug repurposing, is emerging as a pragmatic approach especially owing to the mounting pressure to control the pandemic. Targeting multiple targets with a single drug by employing drug repurposing known as the polypharmacology approach may be an optimised strategy for the development of effective therapeutics. In this study, virtual screening has been carried out on seven popular SARS-CoV-2 targets (3CLpro, PLpro, RdRp (NSP12), NSP13, NSP14, NSP15, and NSP16). A total of 4015 approved drugs were screened against these targets. Four drugs namely venetoclax, tirilazad, acetyldigitoxin, and ledipasvir have been selected based on the docking score, ability to interact with four or more targets and having a reasonably good number of interactions with key residues in the targets. The MD simulations and MM-PBSA studies showed reasonable stability of protein-drug complexes and sustainability of key interactions between the drugs with their respective targets throughout the course of MD simulations. The identified four drug molecules were also compared with the known drugs namely elbasvir and nafamostat. While the study has provided a detailed account of the chosen protein-drug complexes, it has explored the nature of seven important targets of SARS-CoV-2 by evaluating the protein-drug complexation process in great detail. Graphical abstract: Drug repurposing strategy against SARS-CoV2 drug targets. Computational analysis was performed to identify repurposable approved drug candidates against SARS-CoV2 using approaches such as virtual screening, molecular dynamics simulation and MM-PBSA calculations. Four drugs namely venetoclax, tirilazad, acetyldigitoxin, and ledipasvir have been selected as potential candidates. Supplementary Information: The online version contains supplementary material available at 10.1007/s12039-022-02046-0.

11.
Molecules ; 25(20)2020 Oct 10.
Article in English | MEDLINE | ID: covidwho-1302394

ABSTRACT

A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1H-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: 7(a-o) and (2-{4-[3-(1H-3-indolyl)-propyl]-1-piperazinyl}-acetylamine)-N-(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: 13(a-l) were synthesized and evaluated as novel multitarget ligands towards dopamine D2 receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying Ki values from 5 to 10 nM. Compounds 7k, Ki = 5.63 ± 0.82 nM, and 13c, Ki = 6.85 ± 0.19 nM, showed the highest potencies. The affinities for D2 ranged from micro to nanomolar, while MAO-A inhibition was more discrete. Nevertheless, compounds 7m and 7n showed affinities for the D2 receptor in the nanomolar range (7n: Ki = 307 ± 6 nM and 7m: Ki = 593 ± 62 nM). Compound 7n was the only derivative displaying comparable affinities for SERT and D2 receptor (D2/SERT ratio = 3.6) and could be considered as a multitarget lead for further optimization. In addition, docking studies aimed to rationalize the molecular interactions and binding modes of the designed compounds in the most relevant protein targets were carried out. Furthermore, in order to obtain information on the structure-activity relationship of the synthesized series, a 3-D-QSAR CoMFA and CoMSIA study was conducted and validated internally and externally (q2 = 0.625, 0.523 for CoMFA and CoMSIA and r2ncv = 0.967, 0.959 for CoMFA and CoMSIA, respectively).


Subject(s)
Biological Assay/methods , Receptors, Dopamine D2/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Receptors, Dopamine D2/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Structure-Activity Relationship
12.
Br J Pharmacol ; 179(10): 2121-2127, 2022 05.
Article in English | MEDLINE | ID: covidwho-1297572

ABSTRACT

COVID-19 (SARS-CoV-2) causes multiple inflammatory complications, resulting not only in severe lung inflammation but also harm to other organs. Although the current focus is on the management of acute COVID-19, there is growing concern about long-term effects of COVID-19 (Long Covid), such as fibroproliferative changes in the lung, heart and kidney. Therefore, the identification of therapeutic targets not only for the management of acute COVID-19 but also for preventing Long Covid are needed, and would mitigate against long-lasting health burden and economic costs, in addition to saving lives. COVID-19 induces pathological changes via multiple pathways, which could be targeted simultaneously for optimal effect. We discuss the potential pathologic function of increased activity of the endocannabinoid/CB1 receptor system and inducible NO synthase (iNOS). We advocate a polypharmacology approach, wherein a single chemical entity simultaneously interacts with CB1 receptors and iNOS causing inhibition, as a potential therapeutic strategy for COVID-19-related health complications. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/complications , Endocannabinoids , Humans , Lung , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
13.
Int J Mol Sci ; 22(12)2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1282512

ABSTRACT

The sigma-1 (σ1) receptor is a 'pluripotent chaperone' protein mainly expressed at the mitochondria-endoplasmic reticulum membrane interfaces where it interacts with several client proteins. This feature renders the σ1 receptor an ideal target for the development of multifunctional ligands, whose benefits are now recognized because several pathologies are multifactorial. Indeed, the current therapeutic regimens are based on the administration of different classes of drugs in order to counteract the diverse unbalanced physiological pathways associated with the pathology. Thus, the multi-targeted directed ligand (MTDL) approach, with one molecule that exerts poly-pharmacological actions, may be a winning strategy that overcomes the pharmacokinetic issues linked to the administration of diverse drugs. This review aims to point out the progress in the development of MTDLs directed toward σ1 receptors for the treatment of central nervous system (CNS) and cancer diseases, with a focus on the perspectives that are proper for this strategy. The evidence that some drugs in clinical use unintentionally bind the σ1 protein (as off-target) provides a proof of concept of the potential of this strategy, and it strongly supports the promise that the σ1 receptor holds as a target to be hit in the context of MTDLs for the therapy of multifactorial pathologies.


Subject(s)
Receptors, sigma/metabolism , Animals , Humans , Inhibitory Concentration 50 , Ligands , Neoplasms/drug therapy , Neoplasms/pathology , Stem Cells/metabolism
14.
Front Med (Lausanne) ; 8: 640974, 2021.
Article in English | MEDLINE | ID: covidwho-1186836

ABSTRACT

Precision medicine and molecular systems medicine (MSM) are highly utilized and successful approaches to improve understanding, diagnosis, and treatment of many diseases from bench-to-bedside. Especially in the COVID-19 pandemic, molecular techniques and biotechnological innovation have proven to be of utmost importance for rapid developments in disease diagnostics and treatment, including DNA and RNA sequencing technology, treatment with drugs and natural products and vaccine development. The COVID-19 crisis, however, has also demonstrated the need for systemic thinking and transdisciplinarity and the limits of MSM: the neglect of the bio-psycho-social systemic nature of humans and their context as the object of individual therapeutic and population-oriented interventions. COVID-19 illustrates how a medical problem requires a transdisciplinary approach in epidemiology, pathology, internal medicine, public health, environmental medicine, and socio-economic modeling. Regarding the need for conceptual integration of these different kinds of knowledge we suggest the application of general system theory (GST). This approach endorses an organism-centered view on health and disease, which according to Ludwig von Bertalanffy who was the founder of GST, we call Organismal Systems Medicine (OSM). We argue that systems science offers wider applications in the field of pathology and can contribute to an integrative systems medicine by (i) integration of evidence across functional and structural differentially scaled subsystems, (ii) conceptualization of complex multilevel systems, and (iii) suggesting mechanisms and non-linear relationships underlying the observed phenomena. We underline these points with a proposal on multi-level systems pathology including neurophysiology, endocrinology, immune system, genetics, and general metabolism. An integration of these areas is necessary to understand excess mortality rates and polypharmacological treatments. In the pandemic era this multi-level systems pathology is most important to assess potential vaccines, their effectiveness, short-, and long-time adverse effects. We further argue that these conceptual frameworks are not only valid in the COVID-19 era but also important to be integrated in a medicinal curriculum.

15.
Comput Struct Biotechnol J ; 19: 1998-2017, 2021.
Article in English | MEDLINE | ID: covidwho-1171983

ABSTRACT

The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.

16.
Front Pharmacol ; 12: 636989, 2021.
Article in English | MEDLINE | ID: covidwho-1127996

ABSTRACT

The outbreak of a new coronavirus (SARS-CoV-2), which is responsible for the COVID-19 disease and is spreading rapidly around the world, urgently requires effective therapeutic treatments. In this context, drug repurposing represents a valuable strategy, as it enables accelerating the identification of drug candidates with already known safety profiles, possibly aiding in the late stages of clinical evaluation. Moreover, therapeutic treatments based on drugs with beneficial multi-target activities (polypharmacology) may show an increased antiviral activity or help to counteract severe complications concurrently affecting COVID-19 patients. In this study, we present the results of a computational drug repurposing campaign that aimed at identifying potential inhibitors of the main protease (Mpro) of the SARS-CoV-2. The performed in silico screening allowed the identification of 22 candidates with putative SARS-CoV-2 Mpro inhibitory activity. Interestingly, some of the identified compounds have recently entered clinical trials for COVID-19 treatment, albeit not being assayed for their SARS-CoV-2 antiviral activity. Some candidates present a polypharmacology profile that may be beneficial for COVID-19 treatment and, to the best of our knowledge, have never been considered in clinical trials. For each repurposed compound, its therapeutic relevance and potential beneficial polypharmacological effects that may arise due to its original therapeutic indication are thoroughly discussed.

17.
Biol Rev Camb Philos Soc ; 96(1): 205-222, 2021 02.
Article in English | MEDLINE | ID: covidwho-755321

ABSTRACT

The reciprocal nature of drug specificity and target specificity implies that the same is true for their respective promiscuities. Protein promiscuity has two broadly different types of footprint in drug design. The first is relaxed specificity of binding sites for substrates, inhibitors, effectors or cofactors. The second involves protein-protein interactions of regulatory processes such as signal transduction and transcription, and here protein intrinsic disorder plays an important role. Both viruses and host cells exploit intrinsic disorder for their survival, as do the design and discovery programs for antivirals. Drug action, strictly speaking, always relies upon promiscuous activity, with drug promiscuity enlarging its scope. Drug repurposing searches for additional promiscuity on the part of both the drug and the target in the host. Understanding the subtle nuances of these promiscuities is critical in the design of novel and more effective antivirals.


Subject(s)
Pharmaceutical Preparations , Viral Proteins , Antiviral Agents/pharmacology , Binding Sites , Drug Design , Viral Proteins/genetics
18.
Expert Opin Drug Discov ; 15(9): 1025-1044, 2020 09.
Article in English | MEDLINE | ID: covidwho-378198

ABSTRACT

INTRODUCTION: In recent years, computational polypharmacology has gained significant attention to study the promiscuous nature of drugs. Despite tremendous challenges, community-wide efforts have led to a variety of novel approaches for predicting drug polypharmacology. In particular, some rapid advances using machine learning and artificial intelligence have been reported with great success. AREAS COVERED: In this article, the authors provide a comprehensive update on the current state-of-the-art polypharmacology approaches and their applications, focusing on those reports published after our 2017 review article. The authors particularly discuss some novel, groundbreaking concepts, and methods that have been developed recently and applied to drug polypharmacology studies. EXPERT OPINION: Polypharmacology is evolving and novel concepts are being introduced to counter the current challenges in the field. However, major hurdles remain including incompleteness of high-quality experimental data, lack of in vitro and in vivo assays to characterize multi-targeting agents, shortage of robust computational methods, and challenges to identify the best target combinations and design effective multi-targeting agents. Fortunately, numerous national/international efforts including multi-omics and artificial intelligence initiatives as well as most recent collaborations on addressing the COVID-19 pandemic have shown significant promise to propel the field of polypharmacology forward.


Subject(s)
Drug Discovery , Polypharmacology , Computational Biology , Computational Chemistry , Drug Development , Humans , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL